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Abstract. The Maritime Aerosol Network (MAN) has been
collecting data over the oceans since November 2006. Over
80 cruises were completed through early 2010 with deploy-
ments continuing. Measurement areas included various parts
of the Atlantic Ocean, the Northern and Southern Pacific
Ocean, the South Indian Ocean, the Southern Ocean, the Arc-
tic Ocean and inland seas. MAN deploys Microtops hand-
held sunphotometers and utilizes a calibration procedure and
data processing traceable to AERONET. Data collection in-
cluded areas that previously had no aerosol optical depth
(AOD) coverage at all, particularly vast areas of the South-
ern Ocean. The MAN data archive provides a valuable re-
source for aerosol studies in maritime environments. In the
current paper we present results of AOD measurements over
the oceans, and make a comparison with satellite AOD re-
trievals and model simulations.

1 Introduction

Atmospheric aerosol optical studies, involving radiative forc-
ing analysis, aerosol-cloud interactions, remote sensing of
the atmosphere, and global aerosol modeling require accu-
rate information on aerosol optical depth (AOD). Sea salt is
a major contributor to the columnar AOD over the oceans
(Mahowald et al., 2006), and therefore affects the radiation
budget directly (e.g. Haywood et al., 1999) and indirectly
(O’Dowd et al., 1999). The complexity of aerosol produc-
tion (Lewis and Schwartz, 2004) and advection from land
sources warrant systematic measurements of aerosol optical
parameters in maritime environments. Statistical robustness
is required to better understand regional aerosol climatology
and trends derived from the long-term satellite records.
Generally speaking, not all areas of the World Ocean can

be studied from islands; aside from environmental satellites,
ships are the only platform whereby measurements can be
obtained. Ideally, a long-term comprehensive program is
needed to include AOD on the list of routine meteorological
and/or scientific measurements carried out onboard research
vessels. Since network-grade stabilized platforms with au-
tomatic instrumentation capable of producing highly accu-
rate AOD are not yet available, hand-held instruments con-
tinue to be the only option for shipboard AOD data collec-
tion. Therefore, the establishment of the Maritime Aerosol
Network (MAN) as a component of the Aerosol Robotic
Network (Smirnov et al., 2009) has been a key step to-
wards meeting this data need. MAN exploits the existence
of the advanced AERONET calibration facilities and pro-
cessing schemes, and relies on many logistical and scientific
developments from the AERONET Project. The MAN web-
based public data archive is a part of the AERONET web
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site. MAN represents an important strategic sampling ini-
tiative and ship-borne data acquisition complements island-
based AERONET measurements.
MAN started collecting data over the oceans in Novem-

ber 2006 and since then has made significant progress in data
collection and archival. With more than 80 cruises completed
and ongoing (and many more planned), the MAN database
continues to grow. MAN will enhance our knowledge of
spectral AOD variation over the oceans. The ultimate ob-
jective is to advance fundamental scientific understanding of
aerosol optical properties globally through highly accurate
and standardized measurements.
In the current paper we present new results on aerosol op-

tical depth measurements over the oceans and compare ship-
borne measurements to satellite retrievals from various sen-
sors and to global chemical transport models.

2 Instrumentation, measurement areas and network
products

The Maritime Aerosol Network (Smirnov et al., 2006, 2009)
deploys hand held Microtops II sunphotometers and uti-
lizes calibration and data processing procedures traceable to
AERONET (Holben et al., 1998, 2001; Smirnov et al., 2004).
The Microtops II Sunphotometer has five spectral channels
and can accommodate several possible filter configurations
within the spectral range of 340–1020 nm. Detailed descrip-
tions of the instrument are given by Morys et al. (2001),
Porter et al. (2001), and Knobelspiesse et al. (2003). The es-
timated uncertainty of the optical depth in each channel does
not exceed±0.02 (Knobelspiesse et al., 2004), primarily due
to inter-calibration against AERONET reference CIMEL in-
struments that are accurate to ∼0.005 at most wavelengths
(Eck et al., 1999). Microtops II instruments have shown
good calibration stability over the years. Most of the in-
struments were manufactured in the late 1990s and have the
original filters in place. The variability in calibration co-
efficients within a few percent over three years relative to
AERONET reference CIMELs is quite acceptable. Figure 1
shows the variability in calibration coefficients (extraterres-
trial irradiance signal, V0) for one particular Microtops II.
Certain changes in the calibration (post-field deployment in
particular) are typically associated with aerosol deposition on
the optics window that occurs at sea. After window cleaning,
the calibration coefficients often approximate their original
(pre-deployment) values. However, for some instruments we
occasionally observed filter degradation which manifests it-
self as a rapid change in the calibration coefficient.
The Maritime Aerosol Network measurement area has in-

cluded northern and southern parts of the Atlantic Ocean;
transects North–South, South–North, and East–West in the
Pacific; intensive study areas in the Southern Ocean and off
the coast of Antarctica including a number of circumnavi-
gation cruises in high southern latitudes. A cruise area in
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Fig. 1. Microtops (S/N 3657) calibration history.

the South Indian Ocean included the region between Re-
union, Crozet, Kerguelen and Amsterdam Islands, as well
as in the Mozambique Channel. Atmospheric measure-
ments in the Bay of Bengal, Gulf of Bothnia as well as
the Arabian, Mediterranean, Black, Baltic, Norway, Bering,
Beaufort Seas, represented important contributions to the
database. Previously, some of those oceanic regions (e.g. the
Bering Sea, the Beaufort Sea, the South Indian Ocean, coast
of Antarctica) had very limited or no surface-based AOD
coverage at all.
The Maritime Aerosol Network data products are:

a. Spectral AOD τa(λ),

b. Angstrom parameter α (calculated using a least squares
method within the 440–870 nm wavelength range),

c. columnar precipitable water, and

d. AOD at 500 nm partitioned into fine and coarse compo-
nents according to the Spectral De-convolution Algo-
rithm (SDA) by O’Neill et al. (2001, 2003).

All products have three data quality levels: Level 1.0 (un-
screened), Level 1.5 (cloud-screened), and Level 2.0 (cloud-
screened and quality assured). After final calibration the
values of spectral AOD τa(λ) at Level 1.5 match those at
Level 2.0 except for a few possible cloud contaminated out-
liers that are manually removed. The SDA quality assurance
criteria are more complicated in that they involve additional
criteria appended onto each of the three criteria defined in the
previous two sentences. We would like to point out that the
SDA data-QA criteria were empirically determined and were
tested on various subsets of different aerosol types. These
tests were carried out for various optical conditions across

the AERONET database and for the entire MAN dataset.
We would like to emphasize that those criteria are in line
with the AERONET SDA products; however, fine and coarse
aerosol optical depth partition products for MAN have addi-
tional quality checks.
All products are available on the MAN web page, which

is a part of the AERONET web site. A public domain web-
based archive dedicated to the network activity can be found
at: http://aeronet.gsfc.nasa.gov/new web/maritime aerosol
network.html.

3 Maritime Aerosol Network (MAN) global coverage

MAN started regular data acquisition in November 2006 af-
ter two pilot projects were conducted (in 2004 and in the win-
ter of 2005–2006). Since then ship cruises continued accu-
mulating data, with over 1700 days of measurements as of
March 2010. The Level 2.0 data archive is mapped in Fig. 2.
Figure 3 shows latitudinal dependence of the AOD for dif-

ferent oceans and seas. The oceanic data have been divided
roughly by longitude among three oceans: Atlantic (20◦ E–
70◦W), Pacific (70◦W–150◦ E), and Indian (20◦ E–150◦ E).
We consider measurements made south of 60◦ S as belonging
to the Southern Ocean. Data collection in the Arctic Ocean
was limited to the Beaufort Sea area. Measurements taken
over Baltic, Black and Mediterranean Seas were grouped to-
gether. The measured aerosol properties (AOD, Angstrom
parameter, and coarse mode fraction of AOD) for each area
are shown in Figs. 3–6.
Figure 3a shows the latitudinal dependence of AOD daily

averages at a wavelength 500 nm over the Atlantic Ocean.
One can observe a pronounced peak in the distribution within
the latitudinal belt 5◦–20◦N influenced by the dust and
biomass burning aerosol transport from northern Africa. Op-
tical depth variability is rather high ranging from typical
values for the remote regions (∼0.07 at 500 nm) to high
aerosol loading close to 1.0. In the Southern Hemisphere
τa(500) is typically less than 0.10; in some cases being as
low as 0.04. Aerosol optical properties in the area north of
30◦ N are highly variable probably due to the various pol-
lution aerosol sources in Europe and episodic dust trans-
port from Africa. A few measurements in the northern ar-
eas near Greenland and Spitsbergen in the summer months
yielded τa(500) values ∼0.07 (typical of background condi-
tions over the oceans). The τa(500) frequency histogram (bin
size δτa = 0.05) in Fig. 4a shows a peak at τa(500) ∼0.075
and indicates that 75% of the data has τa(500) < 0.20. How-
ever the distribution has a “tail” that contains 25% of the
daily averages. Marine and dust aerosol were clearly influ-
ential in producing the small value of the Angstrom parame-
ter (∼0.3) seen at the peak of the frequency distribution (bin
size δα = 0.20) of Fig. 5a. The spectral de-convolution algo-
rithm allows the partition of aerosol optical depth into fine
and coarse parts. The SDA-estimated coarse mode fraction
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Fig. 2. Maritime Aerosol Network global coverage – cruise tracks and daily averages of aerosol optical depth at 500 nm (squares are colored
with respect to AOD values, i.e. blue – AOD< 0.10, green – 0.1≤AOD< 0.2, yellow – 0.2≤AOD< 0.3, orange – 0.3≤AOD< 0.5, red –
0.5≤AOD< 0.7, purple – AOD≥ 0.7).

(ratio of coarse mode AOD to total AOD at a wavelength of
500 nm) varies mainly within the 0.6–0.8 range in regions
where marine and dust aerosols are dominant while being
significantly different for the regions where pollution and
biomass burning aerosols to be more predominant (0.2–0.4).
Frequency distribution of the coarse mode fraction (Fig. 6a)
(bin size = 0.1) peaks at 0.75 with over 60% of occurrences
within the 0.5–0.8 range.
According to the AERONET island stations in the Pa-

cific and available publications summarized by Smirnov et
al. (2002), the remote areas are typically characterized by
τa(500) values ∼0.07. Overall this observation was con-
firmed by MAN ship-based measurements (Fig. 3b). How-
ever, aerosol optical properties were highly variable (AODs
ranged from 0.10 to 0.45) near Japan (heavily influenced by
pollution aerosol and dust from Asia), and were occasion-
ally elevated (a few days with AODs ∼0.20 and higher were
recorded) near the island of Hawaii, and the average AOD
was ∼0.20 near the West coast of South America at tropical
latitudes. In the Pacific the bi-modal frequency distributions
of τa(500) and the Angstrom parameter (Figs. 4b and 5b) are
indicative of two optical conditions. The first is associated
with the remote ocean with peak values near τa(500) ∼ 0.07
and α ∼ 0.5. The second modal feature has a most probable
optical depth of ∼0.23 and α ∼ 1.0. Therefore, in this lat-
ter case the fine mode aerosol fraction contributes more than
50% to the total AOD. The coarse mode fraction frequency
distribution (Fig. 6b) peaks at 0.65; however, it is wider than
in the Atlantic (Fig. 6a) with almost equal frequencies within
the range of 0.2–0.6.

Significant progress has been made in data collection over
the Indian Ocean (Fig. 3c). Measurements over the Arabian
Sea and the Bay of Bengal demonstrated a variety of opti-
cal conditions. AOD values were quite high with daily av-
erages largely over 0.20. Overall, the AOD over the Bay
of Bengal was higher and also produced greater spectral de-
pendence (high Angstrom parameter indicative of a domi-
nant fine mode particle contribution) (see also Moorthy et
al. 2010). Optical properties in the region between Re-
union and Tromelin islands and in the Mozambique Chan-
nel were highly variable. Continental aerosol plumes fre-
quently appear in the area with at least one possible case of
biomass burning aerosol from Africa (12 November 2009)
with τa(500) ∼ 0.60 and α ∼ 1.4. Measurements in the South
Indian Ocean in the area between Reunion, Amsterdam,
Crozet and Kerguelen Islands yielded optical depths rang-
ing between 0.02–0.10. This low optical depth phenomenon
is quite repeatable and was reported elsewhere (Barteneva et
al., 1991) based on the results of a number of cruises con-
ducted in the beginning of the 80s (see also summary in
Smirnov et al., 2002). According to Barteneva et al. (1991)
at 500 nm AODs ranged within 0.05–0.11 to the north of the
Antarctic Convergence zone (up to 40◦ S) and 0.03–0.04 to
the south of it. Recently Vinoj et al. (2007) reported AODs
less than 0.10 at 500 nm in the Indian Ocean south of 40◦ S.
The frequency of occurrences (Fig. 4c) shows that on 55%

of all days τa(500)was below 0.10, whereas for 20% of cases
it was over 0.30. The histogram presents evidence of a nar-
row peak and a wide second peak. The latter peak is at-
tributed to the variety of optical conditions over the Arabian
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Fig. 3. Latitudinal dependence of daily averaged aerosol optical depth in the Atlantic Ocean (a), Pacific Ocean (b), Indian Ocean (c),
Southern Ocean (d), Baltic, Black, and Mediterranean Seas (e), Bering and Beaufort Seas (f).
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Fig. 4. Frequency of occurrences of daily averaged aerosol optical depth at 500 nm for (a) Atlantic Ocean, (b) Pacific Ocean, (c) Indian
Ocean, (d) Southern Ocean, (e) Baltic, Black, and Mediterranean Seas, (f) Bering and Beaufort Seas.

Sea and the Bay of Bengal, related to dust and pollution
emission from adjacent continental regions. The Angstrom
parameter frequency distribution (Fig. 5c) shows a relatively
neutral spectral dependence (typical for clean remote ocean
areas and turbid dusty conditions) and a secondary peak
around 1.3 which can be attributed mainly to the polluted
air in the Bay of Bengal and near coast of Africa (high AOD
cases). This secondary peak was not linked in any simple
fashion to the secondary peak of the AOD histogram. Simi-
lar bimodal structure is evident for the coarse mode fraction
of AOD (Fig. 6c). In this case we can identify the first peak
at 0.15 as associated with the pollution in the Bay of Bengal
whereas the second broad peak (∼0.65) is associated with

dust over Arabian Sea and clean maritime conditions over
other measurement areas.
Measurements in the Southern Ocean yielded the results

shown in Fig. 3d. AOD at 500 nm was quite low; over 80%
of the data points were less than 0.05 in the frequency his-
togram (Fig. 4d). Day to day variation was minimal. The
broad maximum in the Angstrom parameter frequency dis-
tribution is likely due to the higher uncertainty in α com-
putations when τa is low. We would like to point out that
this area of the Southern Ocean previously had almost no
AOD measurement coverage at all; this is another exam-
ple of how the MAN approach yields geo-statistical benefits
which are difficult if not impossible to reproduce using other
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Fig. 5. Frequency of occurrences of daily averaged Angstrom parameter for (a) Atlantic Ocean, (b) Pacific Ocean, (c) Indian Ocean,
(d) Southern Ocean, (e) Baltic, Black, and Mediterranean Seas, (f) Bering and Beaufort Seas.

remote sensing techniques. Measurements in the Southern
Ocean are comparable to the AERONET-based and other
(see Tomasi et al., 2007) coastal measurements in Antarctica
[τa(500) ∼ 0.02–0.03].
Several cruises conducted in the Mediterranean, Black,

Baltic Seas including the Gulf of Bothnia provided a use-
ful but relatively small dataset. Aerosol optical depth was
highly variable (Fig. 3e) changing mainly within 0.10–0.40
range, except for the Gulf of Bothnia where τa(500) was less
than 0.10. Data collection in the Beaufort Sea area (Fig. 3f,
north of 65◦ N) enabled the characterization of background

conditions during the summer of 2007 (τa(500) ∼ 0.04) as
well as capturing Arctic haze events in the spring of 2008.
A variety of optical conditions, such as biomass burning
aerosol transported from Alaska were found during the sum-
mer of 2009. Data acquired in the Bering Sea are included
in Fig. 3f in order to provide a basis for comparison with
other MAN data. While limited to only five days of measure-
ments, it shows τa(500) to be∼0.06–0.08, which is compara-
ble to the remote Pacific Ocean data but higher than Beaufort
Sea background results by a factor of ∼1.5 to 2. Figures 4f
and 5f permit a direct comparison of the AOD and Angstrom
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Fig. 6. Frequency of occurrences of the daily averaged coarse mode fraction for (a) Atlantic Ocean, (b) Pacific Ocean, (c) Indian Ocean,
(d) Southern Ocean, (e) Baltic, Black, and Mediterranean Seas, (f) Bering and Beaufort Seas.

parameters with other regions. Measurements presented in
Figs. 3–6 (e,f) were carried out in different regions and in
various seasons when optical conditions were determined by
a mixture of maritime and continental aerosols. The scat-
ter of the aerosol optical parameters is evident but α, in the
majority of cases is higher than 1.0, which is an indication
of the significant contribution of fine particles to the atten-
uation in the atmospheric column (the coarse mode fraction
of AOD varies mainly within 0.1–0.5 range). The most fre-
quent AOD is ∼0.12 for both subsets (Fig. 4e–f); however,
AOD frequencies are skewed towards higher AODs in the
Baltic, Black, and Mediterranean Seas (Fig. 4e) and towards
smaller AODs in the Bering and Beaufort Seas (Fig. 4f).

Overall statistics for oceanic areas (we did not include in-
land seas - Baltic, Black, and Mediterranean) are presented
in Fig. 7. Despite the fact that vast areas still have limited
or no coverage we can delineate some general characteristic
features of aerosol optical properties over the oceans:
– AOD at a wavelength 500 nm is less than 0.10 over
oceanic areas not influenced by continental pollution,
smoke or dust outflows – Fig. 7a.

– The Angstrom parameter (a general indicator of aerosol
particle size) is generally smaller (<0.50) than values
reported over continents (Holben et al., 2001) and in
many instances less than values reported over island
sites (Smirnov et al., 2002, 2009) – Fig. 7b. Desert dust
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Fig. 7. Frequency of occurrences of daily averaged AOD (a), Angstrom parameter (b), coarse mode AOD (c), coarse mode fraction of
AOD (d) for oceanic areas excluding the inland seas.

contributed about 10% to the overall daily statistics if
we consider AOD> 0.2 and α < 0.6 as thresholds for a
dust subset.

– The coarse mode AOD at 500 nm is less than 0.10 for
the vast majority of occurrences – Fig. 7c.

– Over 50% of the coarse mode fraction is within the
range 0.50–0.80, denoting dominance of coarse aerosol
in the total aerosol optical depth – Fig. 7d.

4 Comparison with satellite retrievals and global
transport models

The ship-borne measurements provide an excellent oppor-
tunity for comparison with global aerosol transport models
and satellite retrievals. AOD differences between satellite re-
trievals or model simulations and ship-borne AODs are pre-
sented in this section. In order to better visualize compar-
isons we present AOD differences as a function of latitude
against MAN ground-truth for each sensor or model. Sun-
photometer measurement series (Level 2.0) were spectrally
adjusted using log-log interpolation to the “validation” wave-
length of 550 nm.

The global model GOCART is driven by the assimilated
meteorological fields from the Goddard Earth Observing
System Data Assimilation System (GEOS4-DAS) and sim-
ulates major aerosol types of dust, sulfate, black carbon, or-
ganic matter, and sea salt (details described in Chin et al.,
2002, 2009, and references therein). GOCART simulated
aerosol optical depth used in this study is archived at 1◦ lati-
tude by 1.25◦ longitude spatial resolution every three hours.
For comparisons in this study, the GOCART output was ex-
tracted to match theMAN observations at the closest location
and time.
GEOS-Chem (www.geos-chem.org) is a global chemical

transport model driven by assimilated meteorology from the
NASA Global Modeling and Assimilation Office (GMAO).
Simulations shown here were performed with v8-03-01 of
the model with GEOS-5 meteorology at 2◦ × 2.5◦ horizontal
resolution (degraded from 0.5◦ × 0.67◦) and 47 vertical lev-
els. The total AOD shown here includes contributions from
sulfate, nitrate, ammonium, black carbon, organic carbon,
sea salt and dust. Aerosol optical properties are based on
the Global Aerosol Data Set (GADS) (Kopke et al., 1997)
with modifications from Drury et al. (2010) and Jaegle et
al. (2010). Model output is sampled along the MAN ship
tracks and matched temporally within 30min (the chemistry
time step of the model).
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The comparison with the median AeroCom model (Schulz
et al., 2006) constructed from the output representing
year 2000 simulations by twelve models (GISS, GOCART,
KYU, LOA, LSCE, MATCH, MOZGN, MPI HAM, PNNL,
TM5 B, UIO CTM, UMI; see details in Textor et al., 2006,
and Kinne et al., 2006) was made in the following way. MAN
data from a given day were averaged per day and the mean
latitude/longitude position was calculated. AeroCom median
model data were extracted for a corresponding month when
ship-based observations were made and at the mean MAN
location for any given day with observations available. Each
day with a MAN observation thus has one corresponding
model value in a 1◦ × 1◦ grid. This “matching” was thus
done differently from other models and satellite sensors but
respects seasonal variability.
The number of morning (Terra) and afternoon (Aqua)

MODIS retrievals matching ship-based τa was quite high.
The matchup criteria were a modification of Ichoku et
al. (2004). We looked for any series of MAN measurements
within ±30min of the MODIS overpass time. MODIS was
required to retrieve at least 5 out of 25 pixels in the 50 km box
around the ship location (details are presented by Kleidman
et al., 2010). In the case of multiple matching sunphotome-
ter measurement series we took the one closest in time to
the overpass if the AOD variability was small and averaged
MAN series measurements if variability was large after elim-
inating outliers. In over 90% of the cases we selected the
closest series.
The matchup criteria for the MISR (algorithm version 22)

product included successful retrievals either in the 17.6 km
MISR retrieval region containing selected ship-based mea-
surement (the “central” region), or in one or more of the eight
retrieval regions surrounding the central one. The MAN time
series for each coincidence include at least one AOD mea-
surement during the hour before the MISR overpass, and at
least one during the hour after the overpass (Kahn et al.,
2005, 2010). The number of matching cases for MISR is
limited (only 61 match-ups) with several outliers. Five out of
seven outliers were identified as being cloud contaminated
(Kahn et al., 2010). The proximity of a coastline in one case
and an ice surface in the other case complicated the retrieval
process for the other two outliers.
Zhang and Reid (2006) developed a methodology to

minimize cloud contamination and other biases in MODIS
aerosol product for implementation in operational aerosol
data assimilation (DA). This DA quality level-3 Terra
MODIS and Aqua MODIS AODs (Zhang and Reid, 2006;
Shi et al., 2010) will be used in this study (marked as DA –
data assimilation quality assured). The over ocean collection
5 MODIS level-2 AODs (marked as Standard) are included
for comparison. We consider any pairs of MODIS and MAN
series data within±30min of the overpass time and spatially
within 30 km. If more than one MAN series data point is
available then we pick the closest in time.
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Fig. 8. Latitudinal dependence of aerosol optical depth differences
between various global aerosol transport models and sunphotome-
ter.

The temporal and spatial scale differences between point
measurements from MAN and area-grids from satellite re-
trievals and model simulations may lead to some differences.
The temporal difference is addressed by utilizing the MAN
series data within a set period from the satellite or model re-
porting time. However, the spatial difference can only be ad-
dressed with several widely distributed measurements within
the domain. As a result, some of the measurements from
MAN may capture episodic aerosol plumes, which may not
be detected by larger grid scale products that average over a
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Fig. 10. Frequency of occurrences of aerosol optical depth differ-
ences between various models/sensors and sunphotometer.

large region. The spatial difference would tend to affect pe-
riods when MAN reported higher AOD and this difference
would be greater for the largest area-grids.
Figure 8 presents AOD differences between global model

simulations and ship-borne AODs as a function of latitude.
GOCART and GEOS-Chem simulations were available only
for the year 2007. From Fig. 8a one can observe that GO-
CART overestimates AOD more often. Positive bias is ev-
ident south of 45◦ S and north of 30◦ N. A significant tem-
poral variability in areas of the Atlantic influenced by dust
and biomass burning sources produced almost symmetrical
AOD differences within the belt 0◦–30◦ N. While the GEOS-
Chem model (Fig. 8b) reproduces many of the NH obser-
vations (clustering around zero bias), large negative excur-
sions are also evident in plumes measured in 2007. The com-
plexity of various continental sources, as well as the coarser
horizontal resolution of the model simulation might explain
the disparity. Unlike GOCART the GEOS-Chem and sun-
photometer AOD differences are approximately equally dis-
tributed around zero south of 60◦ S. The median AEROCOM
model shows more scatter mainly in the Southern Hemi-
sphere (Fig. 8c). AOD differences are mostly negative, how-
ever, distributed almost equally in the areas north of the equa-
tor to 30◦ N.
Satellite retrievals from MODIS and MISR (Fig. 9a–b) in-

dicate a positive bias, very similar to each other, although the
MODIS differences are smaller. Separating Terra and Aqua
retrievals would show that Terra is more severely biased high
than Aqua (Remer et al., 2008). MISR and MODIS re-
trievals are more likely to be biased high than low over ocean,
as the algorithms assume cloud-free scene and dark sur-
faces, whereas unscreened cloud or whitecaps, and non-zero

surface reflectivity due to runoff, pollution, or biological
activity, would all increase scene reflectance (Kahn et al.,
2007).
The standard and data assimilation quality products for

Terra MODIS comparison (Fig. 9c–d) show significant im-
provement in the latitudinal dependence of AOD differences.
The noticeable positive bias in the Standard AOD (Fig. 9c)
disappeared in the DA product (Fig. 9d). In the Northern
Hemisphere differences are almost evenly distributed around
zero with the 0–60◦ degrees belt, while changing the sign of
the AOD differences further north of 60◦N. The strong pos-
itive bias in the Southern Ocean for the Standard AOD be-
came much smaller for the DA product. Comparison made
for the Aqua MODIS (Fig. 9e–f) does show some improve-
ments but no drastic changes. A number of outliers on the
negative side might be associated with the unnoticed cloud
contamination of the sunphotometer data.
We would like to emphasize that our analysis is not in-

tended to determine how many retrievals are within the
claimed uncertainty boundaries or beyond. Rather, we
wanted to show where satellite retrieval biases exist and in
what latitudinal belts corrections are needed. For example,
in the southern latitudes (south of 40◦) the sunphotometer
AODs are low compared with satellite retrievals and mod-
eling results. This discrepancy can be explained, at least
partly, by uncertainties in aerosol production rates (Lewis
and Schwartz, 2004), foam formation and its latitudinal dis-
tribution (Anguelova and Webster, 2006), by a process of
quality control that excludes some residual cloud contami-
nation (Zhang and Reid, 2010), by the accuracy of radiative
transfer models used (Melin et al., 2010), and more accurate
accounting for surface reflectance effects (Sayer et al., 2010).
A valid comparison among various models, satellite prod-

ucts and sunphotometer measurements (SP) is presented in
Fig. 10. The frequency of occurrences histogram indicates
that vast majority of the differences are positive. Only two
out of nine differences (DA Terra-SP and AEROCOM-SP)
are biased slightly negative. The AEROCOM-SP difference
has a much wider distribution and as a consequence peaks at
only 20%, lower than others. GEOS-Chem is almost sym-
metrical around zero, although biased slightly high as are the
other models and sensors. The MISR-SP distribution shows
bi-modality mainly because of the small number of match-
ups available.

5 Summary

The Maritime Aerosol Network has continued extended
spectral AOD data collection to areas that previously had
no coverage. A web-based data archive provides the inter-
national scientific community with valuable data for satel-
lite retrieval validation, atmospheric correction and other
applications. Many areas of the World Ocean still have little
or no coverage and our objective in the future is to extend
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coverage to all of these regions. Our international, multi-
institutional collaborative effort will significantly enhance
our knowledge on the global aerosol distribution over the
oceans. We foresee a continuation of this effort on various
ships of opportunity.
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